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Abstract. The well known ”beauty defect” of
probabilistic neural networks is the biologically
unnatural complete interconnection of neurons with
all input variables. Despite of deep formal reasons
of this undesirable property, it can be removed by
a special subspace approach without leaving the
exact framework of Bayesian decision-making.
As shown in a recent paper the related structural
optimization based on EM algorithm is controlled
by an information criterion. In the present paper
the method has been applied to recognize uncon-
strained handwritten numerals from the database
of Concordia University, Montreal, Canada. The
obtained recognition accuracy is comparable with
the previously published results though it has been
achieved without any preceding feature extraction.

Keywords: Probabilistic neural networks, Statisti-
cal decision-making, Finite mixtures, EM algorithm,
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1 INTRODUCTION

The probabilistic approach to neural networks na-
turally evolves from the general framework of sta-
tistical classification. The basic idea of probabilistic
neural networks (PNN) is to approximate the class-
conditional probability distributions by means of a
kernel estimate (cf. [38]) or by a distribution mixture
(cf. [8], [9], [13], [31], [39]) whereby the components
of mixtures or kernels correspond to formal neurons.

0Early version of the paper: Grim J., Pudil P., Somol P.
(2000) “Recognition of handwritten numerals by structural
probabilistic neural networks”. In: Proc. of the Second ICSC
Symposium on Neural Computation, Berlin, 2000. Bothe H.,
Rojas R. (Eds.). ICSC, Wetaskiwin, pp. 528-534.

There is a similarity between PNN and the ra-
dial basis functions (RBF’s) neural networks (cf. e.g.
[13], [34]). However, the RBF’s are usually optimized
for the sake of a multivariate interpolation or appro-
ximation of some output variables whereas, on the
other hand, the purpose of estimating distribution
mixtures is the Bayesian classification of observati-
ons. Also the simplifying assumption of radial sym-
metry is not necessary in case of mixture components
since the EM algorithm (cf. [37], [3], [41], [4]) as an
optimization tool is usually applicable in full genera-
lity.

A week point of the probabilistic approach to neu-
ral networks is the tacitly assumed complete in-
terconnection of component distributions (neurons)
with all input variables. This property follows from
the fundamental fact that all component distributi-
ons of a mixture must be defined on the same space
and therefore they have to depend on the same set
of variables.

Recently a new approach to structural optimi-
zation of probabilistic neural networks has been pro-
posed [11] making use of an idea originally designed
for multivariate pattern recognition. It is based on
finite mixtures including binary structural parame-
ters. By means of a special “background” substitu-
tion technique the evaluation of components can be
confined to “relevant” subspaces only. In this way the
receptive fields of neurons can be reduced to arbit-
rary subsets of input variables. The optimal choice
of input variables is controlled by an information cri-
terion.

In the present paper we apply the method of
structural optimization to recognition of totally
unconstrained handwritten numerals from the data-
base of Concordia University in Montreal. The pro-
blem was solved in the original space of non-reduced
dimension N=1024 (binary 32x32 raster). Unlike si-
milar published solutions we didn’t use any prece-
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ding feature extraction or feature selection which
may essentially improve the classification accuracy.
In computational experiments with randomly initia-
lized mixture models we obtained repeatedly recogni-
tion accuracy which is comparable with the results
reported in literature.

2 RECOGNITION
BASED ON MIXTURES

Let us suppose that some observations

x = (x1, x2, . . . , xN ) ∈ X
from an N -dimensional discrete space X are to be
classified into one of a finite set of mutually exclusive
classes

Ω = {ω1, ω2, . . . , ωK}.
Considering a statistical problem of pattern re-
cognition we assume that the random occurrence
of observations x ∈ X is characterized by class-
conditional probability distributions P (x|ω) and by
the related a priori probabilities p(ω), ω ∈ Ω. All sta-
tistical information about the set of classes Ω, given
some observation x ∈ X , is expressed by the Bayes
formula for a posteriori probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
ω ∈ Ω (1)

where
P (x) =

∑

ω∈Ω

P (x|ω)p(ω) (2)

is the unconditional probability distribution of x.
The posterior distribution p(ω|x) may be used to de-
fine a unique final decision or to evaluate some more
complex decisions including e.g. a loss function.

In view of the Bayes formula (1) the decision pro-
blem can be solved by estimating the unknown pro-
babilistic description of classes. In the present paper
we assume that the conditional distributions P (x|ω)
can be approximated by finite mixtures of the form

P (x|ω) =
∑

m∈Mω

F (x|m, ω)f(m|ω), (3)

x ∈ X ,
∑

m∈Mω

f(m|ω) = 1, ω ∈ Ω

where f(m|ω) ≥ 0 are some conditional probabilistic
weights, F (x|m,ω) the component distributions and
Mω the index set. For the sake of a simple notation
we introduce consecutive indexing of components.
We denote Mωk

the index set of the class ωk ∈ Ω:

Mωk
= {Mωk−1 + 1,Mωk−1 + 2, . . . ,Mωk

}, (4)

Mωk−1 < Mωk
, Mω0 = 0, k = 1, 2, . . . , K,

i.e. the number of components of the mixture
P (x|ωk) is |Mωk

| = (Mωk
− Mωk−1). In this way

the component index m uniquely identifies the class
ω ∈ Ω and therefore the parameter ω can be partly
omitted in Eq. (3), i.e. we can write

P (x) =
∑

m∈M
F (x|m)f(m), f(m) = f(m|ω)p(ω).

(5)
As already mentioned in Introduction, the basic

idea of PNN is to view the component distributions
in Eq. (5) as formal neurons. In other words, the
output of the m-th neuron as a function of x is de-
fined by the component F (x|m). Consequently, for
each ω ∈ Ω the a posteriori probability p(ω|x) is
proportional to a weighted sum of output variables
of neurons from Mω (cf. (1), (5)).

An important feature of PNN is the possibility to
optimize the multivariate components by means of
EM algorithm (cf. e.g. [8], [9]). As it will be shown
in the following, the EM algorithm can be modified
to include the structural optimization of PNN.

3 STRUCTURAL MODEL

One of the most natural features of multilayer neural
networks is the possibility to connect any particular
neuron with arbitrary subset of nodes of input layer.
Unfortunately, in probabilistic neural networks this
structural freedom is not compatible with a statisti-
cally correct Bayesian decision-making. For example,
if we assume that each layer of a neural network is
described by a mixture of component distributions
corresponding to neurons, then all the components
must be defined on the same input space to satisfy
the norming property

∑

x∈X
P (x) =

∑

m∈M
f(m)

∑

x∈X
F (x|m) = 1.

Obviously, any component F (x|m) defined on a sub-
space of X (i.e. normed to 1 on a subspace of X )
would disturb the above norming condition. For this
reason all the neurons must be connected with all the
input variables and, in this sense, the complete inter-
connection property of probabilistic neural networks
is enforced by the very basic paradigm of probabilis-
tic description. On the other hand, such a structural
“rigidity” is unnatural from the point of view of bio-
logical neural systems. It should be also emphasized
that optimization of the completely interconnected
models may cause computational difficulties because
of a large number of involved parameters.
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To avoid the undesirable complete interconnection
property we apply the structural approach to proba-
bilistic neural networks [6],[11]. Making substitution

F (x|m) = F (x|0)G(x|m, φm),

we introduce a modified mixture of distributions

P (x|ω) =
∑

m∈Mω

F (x|0)G(x|m,φm)f(m) (6)

where

F (x|0) =
∏

n∈N
fn(xn|0), N = {1, 2, . . . , N} (7)

is a nonzero “background” probability distribution
common to all classes ω ∈ Ω. The background dis-
tribution is usually defined as a product of margi-
nals, i.e. fn(xn|0) = Pn(xn). The component functi-
ons G(x|m,φm) include additional binary structural
parameters φmn ∈ {0, 1}:

G(x|m,φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

, (8)

φm = (φm1, . . . , φmN ) ∈ {0, 1}N .

We can see that, by setting φmn = 0, any component-
specific distribution fn(xn|m) can be substituted by
the respective (nonspecific) univariate background
distribution fn(xn|0), i.e. we can write equivalently

F (x|m) =
∏

n∈N
fn(xn|m)φmnfn(xn|0)1−φmn . (9)

It can be seen that the component functions
G(x|m,φm) may be defined on different subspaces
and the complexity and “structure” of the finite mix-
ture (6) can be controlled by means of the binary
parameters φmn.

It is an important aspect of the model (6) that the
background probability distribution F (x|0) can be
canceled in the Bayes formula (1), i.e. we can write

p(ω|x) =

∑
m∈Mω

G(x|m, φm)f(m)∑
ω∈Ω

∑
j∈Mω

G(x|j, φj)f(j)
. (10)

Therefore, the a posteriori probability p(ω|x) is pro-
portional to weighted sum of the component functi-
ons G(x|m,φm) which can be defined on different
subspaces:

p(ω|x) ≈
∑

m∈Mω

G(x|m,φm)f(m). (11)

As it will be shown in the next section, the optimal
choice of structural parameters φmn can be included
into the EM algorithm (cf. [11]).

According to our best knowledge, in literature
there is no similar statistically correct subspace ap-
proach to Bayesian decision-making. The only rela-
ted method can be traced back to an early paper of
Watanabe [44] (see also e.g. [28], [46]) who proposed
a classification rule based on projecting input data
vectors into class-specific subspaces spanned by sub-
sets of basis vectors, usually by subsets of principal
components. The primary model for a class is then
a linear subspace (linear manifold) of the Euclidean
pattern space and the input vector x ∈ X is classi-
fied according to its largest projection. In view of the
typical properties of subspace methods (a) the clas-
sification of a pattern x ∈ X is based solely on its
direction and does not depend on the magnitude of x
and (b) the decision surfaces are quadratic (cf. [35]).
The second limitation has been avoided by conside-
ring mixtures of linear models (cf. e.g. [20], [16], [1]).
It appears that Oja and others proposed neural ne-
twork implementation of subspace methods (cf. e.g.
[29], [30], [35], [15]). The subspace projection me-
thods are computationally simple but they do not
provide statistically correct decision models because
they are not properly normalizable (cf. [15]).

4 ESTIMATION OF
STRUCTURAL MODELS

Given a set of independent observations

Sω = {x(1), . . . , x(K)}, x(k) ∈ X ,

we can compute maximum-likelihood estimate of the
mixture (6) by maximizing the log-likelihood crite-
rion

L =
1
|Sω|

∑

x∈Sω

log [
∑

m∈Mω

F (x|0)G(x|m,φm)f(m|ω)]

(12)
by means of EM algorithm (cf. e.g. [3], [4], [49]). In
our case we can write the iterative equations of EM
algorithm in the form (cf. [11]):

E-Step: (m ∈Mω, x ∈ Sω, t = 0, 1, 2, . . .)

q(t)(m|x) =
G(t)(x|m,φ

(t)
m )f (t)(m|ω)

∑
j∈Mω

G(t)(x|j, φ(t)
j )f (t)(j|ω)

, (13)

M-Step: (m ∈Mω, n ∈ N )

f (t+1)(m|ω) =
1
|Sω|

∑

x∈Sω

q(t)(m| x), (14)

f (t+1)
n (ξ|m) =
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=
1

|Sω|f (t+1)(m)

∑

x∈Sω

δ(ξ, xn)q(t)(m|x), ξ ∈ Xn

(15)

γ(t+1)
mn =

1
|Sω|

∑

x∈Sω

q(t)(m|x) log
f

(t+1)
n (xn|m)
fn(xn|0)

(16)

φ(t+1)
mn =

{
1, γ

(t+1)
mn ∈ Γ(t+1),

0, γ
(t+1)
mn 6∈ Γ(t+1),

, (17)

where Γ(t+1) is the set of r highest quantities γ
(t+1)
mn :

Γ(t+1) ⊂ {γ(t+1)
mn }m∈Mω n∈N , |Γ(t+1)| = r. (18)

The iterative equations of EM algorithm gene-
rate a nondecreasing sequence {L(t)}∞0 converging
to a possibly local maximum of the log-likelihood
function (12), (cf. [11]).

Let us note that Eq. (16) can be rearranged by
using equation (15):

γ(t+1)
mn = f (t+1)(m|ω)

∑

ξ∈Xn

f (t+1)
n (ξ|m) log

f
(t+1)
n (ξ|m)
fn(ξ|0)

(19)
= f (t+1)(m|ω)I(f (t+1)

n (·|m)||fn(·|0))

and the structural criterion γ
(t+1)
mn can be expres-

sed in terms of Kullback-Leibler discrimination in-
formation (see e.g. [44]) I(f (t+1)

n (·|m)||fn(·|0)) be-
tween the conditional component-specific distribu-
tion f

(t+1)
n (xn|m) and the corresponding univariate

“background” distribution fn(xn|0). In this sense at
each iteration the r-tuple of the most informative
conditional distributions f

(t+1)
n (·|m) is included in

the structural mixture model at each iteration.
Remark 4.1. In the standard form, the EM al-

gorithm is an off-line estimation method. However,
there is a straightforward connection to learning pro-
cedures via a sequential modification of the EM algo-
rithm which can be interpreted from the neurophys-
iological point of view (cf. [12]).

5 COMPUTATIONAL
EXPERIMENTS

The numeral database of Concordia University in
Montreal, Canada was used repeatedly by different
authors to test and compare various classification
methods. The totally unconstrained handwritten nu-
merals were collected from so called ”dead-letter” en-
velopes by the U.S. Postal Service at different locati-
ons in the United States and digitized in bilevel on
a 64x224 grid of 0.153 mm square raster fields. This

corresponds to a resolution of approximately 166 PPI
(cf. [2]).

The numerals show many different styles as well
as sizes. For this reason the numerals were size-
normalized probably in all the published experi-
ments. Most authors have followed suggestion of the
original documentation to use 4000 specified nume-
rals for training of classifiers (400 per class) and 2000
numerals (200 per class) for independent testing. In
most cases also different feature extraction methods
were used in the preprocessing phase.

In the present paper the training- and testing sets
were used as proposed in documentation. In the pre-
processing phase all numerals were normalized to the
size 32x32 in a simple way, by periodical deleting
or doubling the rows and/or columns. No special fe-
ature extraction method was used, however, in or-
der to decrease positional dependencies, the training
data set was extended by 5 horizontal and 5 verti-
cal shifts (−2,−1, 0,+1, +2) with the resulting num-
ber of 100000, (= 5x5x4000) training numerals. This
idea can be viewed as an analogy of the well known
microscopic movements of human eye observing a fi-
xed object.

The class-conditional distributions were approxi-
mated in the original 1024-dimensional space by the
structural distribution mixtures (6), i.e. in the form

P (x|ω) = F (x|0)
∑

m∈Mω

f(m|ω)G(x|m, φm). (20)

Since in our case the variables are binary: xn ∈
{0, 1}, we can write

θnm = fn(1|m), n ∈ N , m ∈M, (21)

fn(xn|m) = θxn
nm(1− θnm)1−xn , xn ∈ {0, 1} (22)

and further

F (x|0) =
∏

n∈N
θxn

n0 (1− θn0)1−xn , (23)

G(x|m, φm) =
∏

n∈N

[
θxn

nm(1− θnm)1−xn

θxn
n0 (1− θn0)1−xn

]φmn

. (24)

The parameters f(m|ω), θmn and φmn were estima-
ted by means of the EM algorithm of Section 4. In
repeated computations the iterative procedure (13)-
(17) was started randomly with identical number of
components |Mω| = 35. From the computational
point of view the number of components appears to
be rather unessential parameter since it is spontane-
ously suppressed in the course of EM iterations.

The total number of nonzero parameters φmn was
set in different experiments to different values be-
tween 2000 and 7000. At the beginning the number
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Tabulka 1: Recognition of numerals from the database of Concordia University, Montreal. Classification accuracy
(class-conditional and global) of 8 independent randomly initialized solutions as verified by independent test
set of 2000 numerals. The first 10 columns represent recognition accuracy of the classes ”0”, ”1”, . . ., ”9”
respectively, the last column contains the global (average) accuracy.

Class: 0 1 2 3 4 5 6 7 8 9 Average
Solution 1 0.920 0.855 0.945 0.810 0.815 0.825 0.935 0.895 0.850 0.905 0.8755
Solution 2 0.810 0.810 0.920 0.820 0.830 0.805 0.930 0.895 0.840 0.900 0.8560
Solution 3 0.925 0.860 0.955 0.825 0.875 0.845 0.955 0.860 0.895 0.900 0.8895
Solution 4 0.935 0.905 0.935 0.820 0.835 0.825 0.960 0.850 0.905 0.910 0.8880
Solution 5 0.940 0.900 0.910 0.830 0.875 0.815 0.945 0.880 0.905 0.875 0.8875
Solution 6 0.885 0.905 0.895 0.810 0.865 0.780 0.950 0.865 0.845 0.870 0.8670
Solution 7 0.905 0.855 0.940 0.795 0.825 0.805 0.935 0.805 0.860 0.900 0.8625
Solution 8 0.900 0.865 0.925 0.820 0.845 0.870 0.940 0.855 0.905 0.910 0.8835

of component specific parameters θmn(characterized
by φmn = 1) was identical in all components with
the initial position and value chosen randomly. In
the course of iterations we observed strong differen-
tiation. There was a clear tendency to accumulate
the specific parameters θmn at a small number of
significant components. Simultaneously, the compo-
nents containing only nonspecific parameters θ0n (i.e.
with only zero structural parameters φmn = 0) can
be replaced by a single component weighted by the
corresponding sum of weights. In this way the EM
iteration process repeatedly resulted in a small num-
ber of components (10 - 20) with a relatively high
number of component specific parameters (300 - 500)
and one component without specific parameters. The
weight of components is generally increasing with the
number of specific parameters but this dependence
doesn’t hold strictly. By displaying the location of
the chosen specific parameters at the raster we can
see that the components roughly correspond to dif-
ferent variants of the considered numeral in the da-
tabase (cf. Fig. 1).

The class-conditional probability distributions
were estimated in 8 independent randomly initialized
computational experiments. We needed several tens
of iterations of EM algorithm to achieve the ultimate
classification accuracy. In all experiments we obtai-
ned recognition accuracy between 85% and 89%, as
shown in the Table 1.

6 RESULT COMPARISON

Table 2 shows some results relating to the same data
and published in literature. For the sake of compa-
rison we confined ourselves to formally identical ex-
periments only with the recommended training- and

test sets. Also, to keep the comparison simple, we ig-
nore the reject option considered by several authors.

Let us recall that, as it appears, in the published
experiments the numerals were size-normalized and,
unlike our solutions, transformed to a relatively small
number of highly informative features. Thus, Kim &
Lee [19] and Cho [2] used so called Kirsch masks
to compute directional features. Hwang & Bang [17]
extracted features called ”peripheral directional con-
tributivity”, Lam & Suen [22] and Legault & Suen
[24] used structural approaches to extract features.
The feature extraction methods often make use of
some informal a priori knowledge and may essenti-
ally improve the final recognition quality.

7 CONCLUDING REMARK

In the present paper we show that the biologically
unnatural complete interconnection property of pro-
babilistic neural networks can be removed in a sta-
tistically correct way without leaving the exact fra-
mework of Bayesian decision-making. The method is
based on distribution mixtures with product compo-
nents including structural parameters.

The present application of the structural approach
corresponds to a three-layer neural network including
the input layer, the second layer of structural com-
ponent functions and the third layer of output nodes
corresponding to a posteriori probabilities.

Let us remark that the method proposed in the
paper [11] can be used to design multilayer neural
networks by applying the structural optimization re-
peatedly, layer by layer. This is partly enabled by the
previously introduced concept of information preser-
ving transform of the decision problem (cf. [9]) and
also by the binary approximation of PNN (cf. [12]).
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Tabulka 2: Comparison of published results on reco-
gnition of numerals from the database of Concordia
University, Montreal. Only experiments using the re-
commended training- and test sets are included.

Author year accuracy
Lam & Suen [22] (1988) 0.9310
Legault & Suen [24] (1989) 0.9390
Krzyzak et al. [21] (1990) 0.8640
Krzyzak et al. [21] (1990) 0.9485
Mai & Suen [25] (1990) 0.9295
Nadal & Suen [26] (1990) 0.8605
Suen et al. [40] (1990) 0.9305
Kim & Lee [19] (1994) 0.9540
Kim & Lee [19] (1994) 0.9585
Lee [23] (1995) 0.9780
Hwang & Bang [17] (1996) 0.9785
Cho [2] (1997) 0.9605
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Obrázek 1: The first row of the figure shows the marginal probabilities for all classes (i.e. ”mean digits”). The
gray-levels reflect the increasing values of the respective parameters θnm. The next eight rows show ”receptive
fields” of the first-layer neurons as defined by the structural parameters φnm = 1. The white raster fields
correspond to the zero values φnm = 0 (i.e. unused inputs). The first eight components of each class-conditional
mixture are shown respectively.
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